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QCD+QED in finite volume

I On a torus with periodic boundary conditions, the Gauss law forbids a nonzero charge.

∂kEk (x) = ρ(x) ⇒ Q =

∫
d3x ρ(t, x) =

∫
d3x ∂kEk (t, x) = 0

I C∗ boundary conditions in some spatial direction (Wiese, Kronfeld, Polley).

Aµ(x + Lk) = −Aµ(x) ψ(x + Lk) = C−1
ψ̄

T (x) ψ̄(x + Lk) = −ψT (x)C

Electric flux can escape the torus and flow into the mirror charge

Q(t) =

∫
d3x ρ(t, x) =

∫
d3x ∂kEk (t, x) 6= 0



QCD+QED with C∗ boundary conditions

I Local QFT at fixed L (time evolution of fields in x is determined only by the value of fields
and their derivatives x). Locality guarantees

I Renormalizability by power counting
I Volume-independence of renormalization constants
I Operator product expansion
I Effective-theory description of long-distance physics
I Symanzik improvement program

I C∗ boundary conditions preserve

I Translation
I Parity
I Charge conjugation

I C∗ boundary conditions partially break:

I Charge conservation
I Flavour symmetry

However:

I A descrete symmetry group survive, and this is enough to contruct most of the
interesting one-particle states.

I Charge and flavour symmetry breaking is exponentially suppressed in the volume (even
with dynamical photons).

I Operator mixing works as if flavour symmetry were preserved (no additional mixing).
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Flavour symmetries in QED+QCDC

ψ(x + Lk) = C−1
ψ̄

T (x) ψ̄(x + Lk) = −ψT (x)C

I Flavour symmetry is partially broken:

ψf → e iαψf ψ̄f → e−iα
ψ̄f

leaves the b.c.s invariant iff e iα = ±1. Flavour number Ff is not conserved but (−1)Ff is.

I Baryon number is a linear combination of flavour charges

B =
1

3

∑
f

Ff

Baryon number B is not conserved but (−1)3B is. At large enough volume only states with

integer B exist (confinement). Since B is odd iff 3B is odd, then (−1)B is conserved.

I Electric charge is a linear combination of flavour charges

Q =
∑
f

q̂f

3
Ff

Electric charge Q is not conserved but (−1)3Q is. At large enough volume (−1)Q is
conserved.



Flavour symmetries in QED+QCDC

Particle Fu Fd Fs Fc B (−1)Fu (−1)Fd (−1)Fs (−1)Fc (−1)B

π+ 1 −1 0 0 0 − − + + +

π+π+ → ∅ 2 −2 0 0 0 + + + + +

K+ 1 0 −1 0 0 − + − + +

K0 0 1 −1 0 0 + − − + +

D+ 0 −1 0 1 0 + − + − +

D+
s 0 0 −1 1 0 + + − − +

D0 −1 0 0 1 0 − + + − +

p 2 1 0 0 1 + − + + −

n 1 2 0 0 1 − + + + −

Λ0 1 1 1 0 1 − − − + −

Σ+ 2 0 1 0 1 + + − + −

Σ− → Σ+ 0 2 1 0 1 + + − + −

Ξ0 → n 1 0 2 0 1 − + + + −

Ξ− → p 0 1 2 0 1 + − + + −

Ω− → Σ+ 0 0 3 0 1 + + − + −



Flavour violation in QED+QCDC

Ξ− Λ0

K− K+

p

s
s
d

u
u
d

I The s quarks travels around the torus and generates a ∆s = −2 mixing.

I Because of confinement the s quark must be accompanied by another quark.

I This process requires a K meson traveling around the torus. Naively we expect an
exponential suppression exp(−MKL)...



Flavour violation in QED+QCDC

Ξ− Λ0

K− K+

p

s
s
d

u
u
d

C(t; L) =
∑

x

〈Ξ+(t, x)†Ξ+(0)〉 =
∑
n

An(L)e−tMn(L)

En < MΞ− : |An(L)| < e−2µL

' 10−10 for MπL = 4

µ =

[
M2

K± −
(

M2
Ξ− −M2

Λ0 + M2
K±

2MΞ−

)2]1/2
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Translations and charge-conjugation

C∗ b.c.’s in operatorial form:

exp(iPkL) = C

I Pk momentum operator

I exp(iPkL) unitary operator that implements a translation by L along the direction k

I C unitary operator that implements charge conjugation

C-even states C = +1 Pk =
2πnk

L

C-odd states C = −1 Pk =
π(2nk + 1)

L

Let us consider a state with

Pk |ψ〉 = 0 C|ψ〉 = 1 (−1)Q |ψ〉 = −1

Since this is in an eigenstate of C we get

〈ψ|Q|ψ〉 = 0

However this comes from the mixing beween states with Q = ±1,±3, . . . but not from the
mixing with states with Q = 0!
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Finite-volume corrections to hadron masses

∆m(L)

m
=

e2

4π

{
q2ξ(1)

2mL
+

q2ξ(2)

π(mL)2
−

1

4πmL4

∞∑
`=1

(−1)`(2`)!

`!L2(`−1)
T`ξ(2 + 2`)

}
+ . . .

I Very similar to BMW formula for QEDL, but some important differences

I The boundary conditions are encoded in the generalized zeta function ξ(s)

ξ(s) =
∑
n6=0

(−1)
∑

j∈C nj

|n|s

I The coefficients of the 1/L and 1/L2 are completely fixed by charge and mass (universal)

I Non-universal (i.e. spin- and structure-dependent) corrections are order 1/L4. Notice that

these are of order 1/L3 in QEDL. This extra suppression is a direct consequence of locality.

I The non-universal corrections are related to the forward Compton amplitude for the
scattering of a soft photon on the hadron at rest

T` =
d`

d(k2)`
Tµµ (|k|, k)

∣∣∣∣∣
k=0
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Some implementation details

I Both the U(1) and SU(3) gauge fields have to satisfy C∗ b.c.’s

Uµ(x + Lk) = U∗µ(x)

I Instead of the fermionic determinant, one needs to simulate

Pf D2V = Det [D†2VD2V ]1/4 sgn Pf D2V

where the Dirac operator acts on pseudofermions that are defined on the doubled lattice.
RHMC is needed (this would be true also without C∗ b.c.’s)

I At large volume

|Pf D2V | = Det [D†2VD2V ]1/4 '
(

Det [D†VDV ]1/4
)2

.

This is the Clark and Kennedy’s n-th root acceleration.

I The Pfaffian has a mild sign problem with Wilson fermions (it is positive in the continuum
limit).

I (Dirac) interpolating operators of charged states without gauge fixing. In the continuum:

π(t) =

∫
d3x e−ı

∫
d3y Φ(y−x)∂kAk (t,y){ūγ5d + d̄γ5u}(t, x)

where Φ(x) is the electric potential of a unit charge in a box with C∗ b.c.’s

∂k∂kΦ(x) = δ
3(x)

Φ(x + Lk) = −Φ(x)



Summary

I QCD+QED with C∗ boundary conditions is a local QFT in finite volume, and provides a
framework to describe a certain class of electrically-charged states in a rigorous and
gauge-invariant way.

I C∗ boundary conditions partially break flavour (and charge) conservation. Ff is not

conserved but (−1)Ff is.

I Several interesting states are not affected by the finite-volume mixing (p, n, π±, K±, K0,

Λ0, D±, D0, D±s , B±, B0, Σ+)

I Some states are affected by the finite-volume mixing, e.g. Ξ− or Ω−, but the mixing with
lighter states is exponentially suppressed with the volume (with a generally large exponent).

I Non-unversal finite-volume corrections to the masses of stable charged hadrons are 1/L4

rather than 1/L3 (thanks to locality).

I Operator mixing is not affected by breaking of flavour symmetry (thanks to locality).

I QCD+QED with C∗ boundary conditions can be formulated on the lattice with a compact
U(1). Charged states can be described in a gauge-invariant way.


